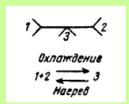
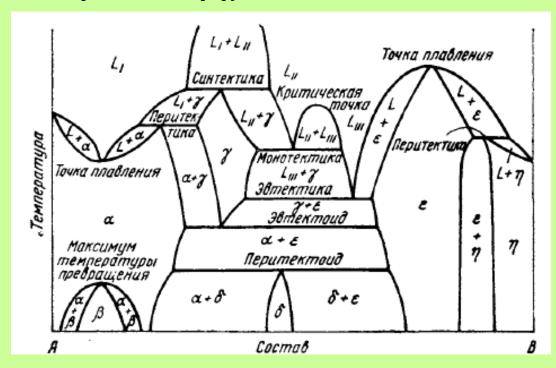
СЕМИНАР 1


Фазовые диаграммы

Различают два класса трехфазных равновесий:

і. Эвтектического типа, которые представляются как:


іі. Перитектического типа:

В каждом из классов можно выделить следующие реакции:

эвтектика: $L \rightleftarrows \alpha + \beta$, эвтектоид: $\gamma \rightleftarrows \alpha + \beta$, монотектика: $L_1 \rightleftarrows \alpha + L_{11}$ перитектика: $\alpha + L \rightleftarrows \beta$, перитектоид: $\alpha + \gamma \rightleftarrows \beta$, синтектика: $L_1 \rightleftarrows L_{11} \rightleftarrows \beta$.

Правила построения иллюстрируются гипотетической ФД:

Задание 1 (2 балла)

Начертить диаграмму равновесия, состоящую из двух монотектических и одной перитектической реакции

Задание 2 (2 балла)

Начертить диаграмму равновесия, состоящую из двух перитектических, одной эвтектоидной и одной перитектоидной реакции. Записать уравнения реакций

Задание 3 (2 балла)

Установить порядок расположения инвариантных температур, если один компонент, имеющий аллотропическое превращение, а другой компонент не имеющий полиморфного превращения, сочетаются в систему, состоящую из перитектической и перитектоидной реакций.

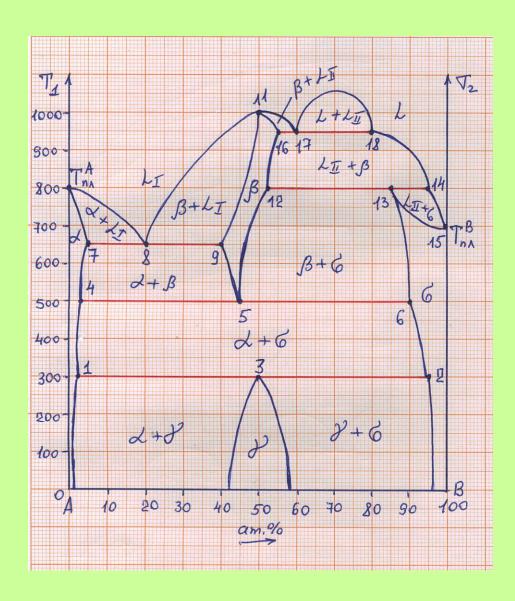
Задание 4 (5 баллов)

Компонент A плавится при 800° C; B – при 700° C; β -фаза плавится конгруэнтно при 1000° C; ее состав 50% B. Имеются следующие изотермические реакции:

Монотектика: L (60% B) $\leftrightarrow \beta$ (55% B) + L_{II} (80% B), при 950°C. Перитектика: σ (85% B) + L_{II} (95% B) $\leftrightarrow \beta$ (52% B), при 800°C.

Эвтектика: $L_{\rm I}$ (20% B) $\leftrightarrow \alpha$ (5% B) + β (40% B), при 650°C.

Эвтектоид: β (45% B) \leftrightarrow α (3% B) + σ (90% B), при 500°C.


Перитектоид: α (2% *B*) + σ (95% *B*) $\leftrightarrow \gamma$ (50% *B*), при 300°C.

Построить диаграмму.

Алгоритм:

- 1) Сделать сетку: отложить по оси абсцисс состав компонентов, по оси ординат температуру до максимального значения с шагом 100 °C
- 2) Начать построение снизу вверх отложить три точки: Перитектоид: α (2% B) (точка 1) + σ (95% B) (точка 2) $\leftrightarrow \gamma$ (50% B) (точка 3) на линии 300°C. Провести линию перитектоидной реакции, соединив точки 1 и 2. Отложить вниз область γ до оси концентраций.
- 3) Построить точки эвтектоидной реакции β (45% B) (точка 5) \leftrightarrow α (3% B) (точка 4) + σ (90% B) (точка 6), соединить очки 4 и 6 эвтектоидной линией при 500°C. Соединить точки 1 и 4, затем 2 и 6.
- 4) Построить эвтектику: $L_{\rm I}$ (20% B) (точка 8) \leftrightarrow α (5% B) (точка 7) + β (40% B) (точка 9), соединить точки 7 и 9 при 650°C. Соединить линией точки 4 и 7, затем 5 и 9.
- 5) Компонент А плавится при 800°С. Обозначить точкой 10. Соединить с точками 7 и 8.
- 6) β -фаза плавится конгруэнтно при 1000° C; ее состав 50% B. Отложить точку 11 с координатами (50% B, 1000 °C). Конгруэнтно значит в точке будет максимум. Соединить 11 с 8 и 9.

- 7) Построить перитектику: σ (85% *B*) (точка 13)+ $L_{\rm II}$ (95% 5) (точка 14) \leftrightarrow β (52% *B*) (точка 12), при 800°C.
- 8) Отложить точку плавления второго компонента В на второй температурной оси при 700 оС (точка 15). Соединить точки 5 и 12, 6 и 13, 13 и 15, 14 и 15.
- 9) Монотектика завершает построение: L (60% B) (точка 17) \leftrightarrow β (55% B)(точка 16) + $L_{\rm II}$ (80% B) (точка 18), при 950°C

